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Abstract 

Unlike states in quantum mechanics or kinetic theory, it is generally believed that a 
classical state is a function with no spread; i.e., it does not involve any statistics. But a 
unified theory of dynamical processes suggests the plausibility of substituting for it the 
functional of error distribution. 

Introduction 

The essential specialness of  a quantum measurement is that it is impossible 
to obtain simultaneously sharply defined values for both position and 
momentum variables. Quantitatively, this means that if a state is carefully 
prepared for which the position has a variance tending to zero, then the 
momentum of that state has a variance which tends to infinity. Thus in 
general, a quantum observable has only a probability distribution of 
values and not a sharply defined one. Hence, one restricts the logic of  the 
physical statements about a quantum system to a subset of  those which 
are experimentally verifiable (Birkhoff & v o n  Neumann, 1936). It  is further 
proved that this subset constitutes a projective geometry and not a Boolean 
algebra. This situation is in contradistinction to the classical case where 
points in the phase space Z are correlated with experimental propositions 
in a one-to-one correspondence. This implies (Sudarshan, 1961) that the 
classical state is a pure state corresponding to the extreme points of the 
convex set of Z. In kinetic theory, at least Lebesgue-measurable subsets of  
Z are kept in correspondence with the experimental propositions; but in 
classical mechanics the stronger assumption, that functions on Z represent 
the dynamical variables of  the system, implies that the pure state in question 
is also the 8-distribution of point suppor t - -as  opposed to a statistical case 
where the support has an extension in Z. Correspondingly, the elements of  
the logic of kinetic theory are Lebesque-measurable subsets of  Z and those 
of classical mechanics cover all the points of  Z. This leads one to believe that 
the numerical result of  a measurement of  an observable in classical mechanics 
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is identical with the function representing it ! As a consequence, the measure- 
ment of a product of classical observables is also set equal to the product 
of their measurements, whereas, in the quantum case, there is generally a 
dispersion. It is precisely this distinction which makes it impossible to 
quantise classical motion in a structure-preserving way (Arens & Babbitt, 
1965). By this we mean that the transformation of a product of classical 
observables into operators with specified commutators can never be equal 
to the product of their transformations. (The product of classical observ- 
ables referred to here is the point product.) But the profound algebraic 
equivalence of the classical and quantum theories (Jordan & Sudarshan, 
1961) would lose much of its viability with the impossibility of structure 
preservation. One would naturally ask, 'If structure is not preserved, what 
then is the extent to which the two theories are equivalent ?' 

However, a more detailed analysis of the problem of structure preserva- 
tion, so as to preserve also the algebraic equivalence, leads to the following 
conclusion: namely, classical observables of an equivalent description of 
quantum theory cannot be considered as functions on Z, but must be 
deemed to be functionals (Shankara & Srinivas, 1971) acting over suitable 
distributions on Z, just as in a statistical theory. This conclusion, arrived 
at in a devious way through an overall study of the structure of dynamics is, 
after all, also our daily experience. In practice, a classical measurement is 
the average of several readings which are theoretically infinite in number. 
In the language of analysis, the 'objective' result of a measurement is only 
the limit of a sequence of measurements (Ghosh, 1957). Now it is also a 
fact that not all readings are the same; apart from chance repetitions, the 
readings do range about a certain mean value. From where do these differ- 
ences arise ? A statistics appears to be inexorably linked up with the process. 
This can mean that the 'status' of a classical system (Sudarshan, 1961) may 
not in reality be a g-function, but a distribution with finite extended support 
in Z. 

But the important difference between this statistics and the one occurring 
in quantum measurements should definitely not be lost sight of: in the 
latter there exists no state in which both position and momentum have 
simultaneously a small variance; i.e., there is no Boolean algebra for which 
the sublogics of position and momentum are Boolean subalgebras. On the 
other hand, in the classical case, there is no such correlation between 
conjugate observables and for any observable the variance could be small, 
though not strictly zero. What is envisaged in the foregoing analysis is hence 
only the inescapable 'subjective' statistics arising due to the interaction of 
the classical system with the measuring apparatus. For the purposes of this 
article, a classical state would mean that state of an event which lies entirely 
within the range of human perception. Hence, we search for this statistics 
in the physiology of the eye or the ear. Although these arguments, with 
suitable modifications, must be applicable to any generic observer, we choose 
the human physiology because, ultimately, all measurements are to be 
traced to the human observer (yon Neumann, 1955). 
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1. Visual Measurements 

This process consists in reading a point against a given mark on a reference 
scale. In order to improve the accuracy in reading, a vernier is generally 
attached to the scale. The principle involved (Parson, 1964) is that the eye 
has the visual capacity to distinguish any irregularity in the line of demarca- 
tion between two contours which is of the order of 5 sec of arc. (The clinical 
standard is actually 1 rain.) This sense of  discrimination has this lower limit 
because of the obvious limitations on the lens system of the eye. This is the 
optimum that can be achieved between resolving power and illumination 
with a normal pupitlary diameter of 2 mm by which 70 ~ of the light is 
utilised. But the pupillary aperture itself executes rapid oscillations the 
moment light falls on it. It first contracts, then oscillates rapidly, and finally 
settles down into a state of contraction. This is not any pathological con- 
dition, but the situation in the normal eye. So there is no way of knowing for 
certain at what instant in this duration the reading is to be made. Besides 
these oscillations, there are still other pupillary reflexes of a random nature. 
One that can be mentioned in this context is the so-called psycho-sensory 
reflex, initiated by the stimulation of any sensory nerve or by emotional 
states and excitement. The pupillary response is a measure of the interest, 
emotion, thought processes and attitudes of the observer (Hess, 1965)! 
This is a very complicated movement, controlled by the two muscles-- 
the sphincter and the dilator--attached to the pupil. The responses of these 
muscles to excitement are very rapid and delicate, and the instantaneous 
size of the pupil is essentially the result of their opposing forces. 

2. Auditory Measurements 

The element of  randomness in this process is more gross because longer 
wavelengths are involved. The smallest change in frequency the ear 
(Scott-Brown, et al., 1965) can detect is different at different intensity 
levels, and this sensitivity is greatest in the range of 2000-3000 c/sec which 
is actually equal to a sound pressure of 2 • 10 -4 dyn/cm 2. This is 15-30 dB 
higher than the intensity of the ubiquitous ambient sound energy due to the 
Brownian motion of the so-called cochlear fluids in the inner ear. Indeed, 
increased acuity beyond this limit is a liability. 

In the middle ear there are two suitably placed windows, which finally 
let into the inner ear a mixture of the sound wave and the wave with its 
phase reversed. This superposition gives a to-and-fro motion to the cochlear 
fluids as a whole, without causing any significant compression or rarefaction 
of  their constituent molecules. This means that sound waves, as such, do 
not travel through the cochlear fluids. (The process resembles the Ramsauer- 
Townsend effect in particle collisions, wherein, a phase reversal of the 
partial wave results in the collision cross-section becoming almost zero.) 
It would otherwise be a disaster because the hum due to the Brownian 
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motion would get mixed up with each incoming wave. This is a good 
teleological reason why the windows of the middle ear are where they are! 

3. Objective Values from Subjective Measurements 

In both the visual and auditory processes of measurement we have seen 
how the random element gives rise to differences in the actual values of 
measurement. The fluctuations are in the pupillary aperture in the first case, 
and in the density in cochlear fluids in the latter. In fact there are many other 
causes for fluctuations if one finds a need to go into details, and perhaps 
they may even be more important. But for a qualitative discussion, which 
is the best we can do, it would suffice to say that these random fluctuations 
are about a mean value, so that they have a normal distribution given by 

%(x) = ~ exp ( -n  z x z) 

where n is the index of precision. Now each particular reading f ,(x) of 
an observable f a t  x is therefore the faltung o f f  with this error distribution: 

f,(x) = f f (x ' )  %(x - x') dx' 

This gives a sequence of readings for the observable f.  Now since % tends 
to the Dirac S-function as n -+ % it is obvious thatf , (x)  -+f(x) as n ~ oo. 
In other words, the objective reading is the limit of the sequence of measure- 
ments and not an 'exact' reading of the observable at the point in question. 

Conclusion 

A structure-preserving quantisation of a classical system necessarily 
implies to treat classical observables as averages over distributions, and 
not as objectively exact measurements (Shankara & Srinivas, 1971). This 
mathematical implication forces us to seek the statistical aspect of the 
whole process of measurement within the observer. This statistics could 
perhaps be identified with the error distribution generated by fluctuations 
in the observer, and in a crude approximation, it is assumed to have a 
Gaussian distribution. Since the limit of the Gaussian is the Dirac 3-measure, 
our faith that the average is really the objectively exact value, happens to 
be correct. But since, ultimately, all measurements are to be traced to the 
human observer, it appears as though it is legitimate to demand that a 
correct knowledge of all fluctuations in the physiology of vision and hearing 
is necessary to define a classical observable. The author believes that in the 
absence of this knowledge, which is, however, unnecessary for classical 
purposes, one fails to decide the corresponding quantum objects with the 
desired precision. But with the highly inadequate present-day physiological 
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knowledge of vision and hearing, who can deny that this is undoubtedly a 
very severe demand ? 

Acknowledgment 

I am grateful to Prof. E. C. G. Sudarshan for his advice in the preparation of this paper, 
to the two medical men Dr. H. Krishna Murthy and Dr. S. R. Chandrashekhar for 
interesting discussions and to Dr. S. R. Valluri, Director, National Aeronautical 
Laboratory, for his kind interest. 

References 

Arens, R. and Babbitt, D. (1965). Journal of MathematicalPhysies, 6, 1071. 
Birkhoff, G. D. and von Neumann (1936). Annals of Mathematics, 37, 832. 
Ghosh, P. K. (1957). Bulletin of the Calcutta Mathematical Society, 49, 25. 
Hess, E. H. (1965). Scientific American, Vol. 212, No. 4, p. 46. 
Jordan, T. F. and Sudarshan, E. C. G. (1961). Review of ModernPhysies, 33, 515. 
yon Neumann (1955). Mathematical Foundations of Quantum Mechanics. Princeton 

University Press, p. 418. 
Parson (1964). Diseases of the Eye. Steward Duke-Elder. 
Scott-Brown, W. G., Ballantyne, J. and Groves, J., eds. (1965). Diseases of the Ear, Nose 

and Throat, Vol. 2. Butterworths, London. 
Shankara, T. S. and Srinivas, M. D. (1971). International Journal of Theoretical Physics, 

4, 395. 
Sudarshan, E. C. G. (1961). 'Structure of Dynamical Theories', Brandeis Lecture Notes. 


